# Datingws com ar

So the negative natural log of 1/2 is the same thing as the natural log of 1/2 to the negative 1 power. Anything to the negative power is just its multiplicative inverse. So negative natural log of 1 half is just the natural log of 2 over here. It's essentially the natural log of 2 over the half-life of the substance.So we could actually generalize this if we were talking about some other radioactive substance.In the last video, we give a bit of an overview of potassium-argon dating.In this video, I want to go through a concrete example.Parce que Linguee est vraiment intuitif, vous obtenez des suggestions de traductions ds les premires lettres tapes.

Quel que soit le domaine d'expertise, trouvez comment les spcialistes traduisent les termes et expressions techniques.

And let's say that the argon-- actually, I'm going to say the potassium-40 found, and let's say the argon-40 found-- let's say it is 0.01 milligram. And to figure out our initial amount, we just have to remember that for every argon-40 we see, that must have decayed from-- when you have potassium-40, when it decays, 11% decays into argon-40 and the rest-- 89%-- decays into calcium-40. So however much argon-40, that is 11% of the decay product.

So how can we use this information-- in what we just figured out here, which is derived from the half-life-- to figure out how old this sample right over here? So we need to figure out what our initial amount is. So if you want to think about the total number of potassium-40s that have decayed since this was kind of stuck in the lava.

The natural log is just saying-- to what power do I have to raise e to get e to the negative k times 1.25 billion? k is equal to the natural log of 1/2 times negative 1.25 times 10 to the ninth power.

So the natural log of this-- the power they'd have to raise e to to get to e to the negative k times 1.25 billion-- is just negative k times 1.25 billion. And then, to solve for k, we can divide both sides by negative 1.25 billion. And what we can do is we can multiply the negative times the top.